Structured Eigenvalue Condition Numbers

نویسندگان

  • Michael Karow
  • Daniel Kressner
  • Françoise Tisseur
چکیده

This paper investigates the effect of structure-preserving perturbations on the eigenvalues of linearly and nonlinearly structured eigenvalue problems. Particular attention is paid to structures that form Jordan algebras, Lie algebras, and automorphism groups of a scalar product. Bounds and computable expressions for structured eigenvalue condition numbers are derived for these classes of matrices, which include complex symmetric, pseudo-symmetric, persymmetric, skewsymmetric, Hamiltonian, symplectic, and orthogonal matrices. In particular we show that under reasonable assumptions on the scalar product, the structured and unstructured eigenvalue condition numbers are equal for structures in Jordan algebras. For Lie algebras, the effect on the condition number of incorporating structure varies greatly with the structure. We identify Lie algebras for which structure does not affect the eigenvalue condition number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Hölder Condition Numbers for Multiple Eigenvalues

The sensitivity of a multiple eigenvalue of a matrix under perturbations can be measured by its Hölder condition number. Various extensions of this concept are considered. A meaningful notion of structured Hölder condition numbers is introduced and it is shown that many existing results on structured condition numbers for simple eigenvalues carry over to multiple eigenvalues. The structures inv...

متن کامل

Structured eigenvalue condition numbers and linearizations for matrix polynomials

This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the penci...

متن کامل

Structured Eigenvalue Problems

Most eigenvalue problems arising in practice are known to be structured. Structure is often introduced by discretization and linearization techniques but may also be a consequence of properties induced by the original problem. Preserving this structure can help preserve physically relevant symmetries in the eigenvalues of the matrix and may improve the accuracy and efficiency of an eigenvalue c...

متن کامل

Structured Condition Numbers for Invariant Subspaces

Invariant subspaces of structured matrices are sometimes better conditioned with respect to structured perturbations than with respect to general perturbations. Sometimes they are not. This paper proposes an appropriate condition number cS, for invariant subspaces subject to structured perturbations. Several examples compare cS with the unstructured condition number. The examples include block ...

متن کامل

Skew-hamiltonian and Hamiltonian Eigenvalue Problems: Theory, Algorithms and Applications

Skew-Hamiltonian and Hamiltonian eigenvalue problems arise from a number of applications, particularly in systems and control theory. The preservation of the underlying matrix structures often plays an important role in these applications and may lead to more accurate and more efficient computational methods. We will discuss the relation of structured and unstructured condition numbers for thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2006